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Abstract

Many fundamental studies have been conducted to explain the occurrence of squeal in disc and drum
brake systems. The elimination of brake squeal, however, still remains a challenging area of research. Here,
a numerical modeling approach is developed for investigating the onset of squeal in a drum brake system.
The brake system model is based on the modal information extracted from finite element models for
individual brake components. The component models of drum and shoes are coupled by the shoe lining
material which is modeled as springs located at the centroids of discretized drum and shoe interface
elements. The developed multi degree of freedom coupled brake system model is a linear non-self-adjoint
system. Its vibrational characteristics are determined by a complex eigenvalue analysis. The study shows
that both the frequency separation between two system modes due to static coupling and their associated
mode shapes play an important role in mode merging. Mode merging and veering are identified as two
important features of modes exhibiting strong interactions, and those modes are likely candidates that lead
to coupled-mode instability. Techniques are developed for a parameter sensitivity analysis with respect to
lining stiffness and the stiffness of the brake actuation system. The influence of lining friction coefficient on
the propensity to squeal is also discussed.
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1. Introduction

Automotive brake noise and vibration control has become increasingly important for the
improvement of vehicle quietness and passenger comfort. Over the years, brake noise has been
classified by frequency contents and given various names such as grunt, judder, moan, groan,
squeal, squeak and so on. In a recent review on disc brake squeal, Kinkaid et al. [1] stated that
there has not been a precise definition of brake squeal. Since Nishiwaki [2] showed that groan and
squeal are generated by the same phenomenon of dynamic instability, both low- and high-
frequency noise can be studied by using the same modeling and analysis techniques. Brake squeal
here is defined as any type of elastic instability that involves elastic modes of various brake
components and is within the audible range of frequencies.

Systematic research on brake squeal can be traced back to the 1950s and still is an active subject
for current researchers and engineers. The structure of brakes which consist of several
components is complicated, and the fugitive nature of friction makes the problem more difficult.
Research on brake squeal has been conducted using theoretical, experimental, and computational
approaches. Many theoretical approaches have been presented to explore the squeal mechanisms.
Early attempts to explain brake squeal emphasized that the negative slope of the friction
coefficient with respect to the relative velocity caused the self-excited vibration. Spurr [3] proposed
the sprag-slip model to introduce a new mechanism called geometry instability, without including
the friction characteristic. Millner [4] also reported that brake squeal may occur even if the friction
coefficient is constant. North [5] first presented a simple 2-dof model, in which the friction leads to
an asymmetric stiffness coupling indicating non-conservative forces and the instability may occur.
This mechanism was developed and advanced by many other investigators, and in this approach it
is believed that brake squeal is mainly caused by dynamic instability of the brake system with
variable friction forces [6,7].

In recent years the main focus on brake squeal problems has shifted from fundamental
theoretical research to more practical and problem-solving oriented efforts. Instead of a simple
schematic model, the brake system model tends to include more brake components, and the
effects of design parameters on the stability can be investigated. Liles [8] created a linear system
model based on the modal information of the disc brake components, and performed a complex
eigenvalue analysis to solve the equations of motion. Guan and Jiang [9] constructed a coupled
linear model including all disc brake components and identified the substructure modes which
have great influence on the system stability. Chowdhary et al. [10] developed an assumed modes
model for squeal prediction of a disc brake, and found that the separation between the frequencies
is an important factor in determining the onset of flutter-type instability. Ouyang et al. [11]
considered the effects of rotation of the disc, and the friction-induced vibration of the disc brake
was treated as a moving load problem. With the improvement of numerical techniques, Hamabe
et al. [12] and Nack [13] directly conducted a complex eigenvalue analysis with a finite element
(FE) model of a brake system including the friction force. In their work on disc brake squeal using
FE analysis, Lee et al. [14] performed a nonlinear contact analysis to determine the pressure
distribution at the friction interface followed by system linearization and a complex modal
analysis. Thus, in their study, the contact stiffness was dependent on local contact pressure.

In the present work, a numerical approach is presented to study the drum brake squeal. FE
models are first created for brake components including the drum and the shoes. The shoe lining is
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modeled as a layer having a distributed compliance that produces a stiffness coupling between the
drum and shoes. There are two components of this coupling, one corresponding to transverse
displacements and the other due to tangential forces arising as a result of friction coupling between
drum and the shoes. The total degrees of freedom are reduced by transforming the physical
coordinate model into a modal coordinate model. The resulting system model has symmetric as well
as asymmetric stiffness matrices, and a complex eigenvalue analysis is carried out to determine the
stability characteristics of the brake assembly. It is seen that eigenvalue veering and compatible
mode shapes for the coupled drum brake system without friction are necessary conditions for brake
squeal to occur in the presence of friction. To authors’ knowledge, this is the first instance when
eigenvalue-loci veering and strong modal coupling are clearly identified as necessary conditions for
coupled-mode instability to arise. Based on this model, the influences of the friction coefficient, the
lining stiffness, and the hydraulic cylinder stiffness on system stability are discussed.
2. Modeling of drum brake system

The procedure to create a linear brake system model includes the following steps: constructing
FE models for brake components, performing modal analysis and extracting the modal
information (frequencies and mode shapes), adding the effects of lining stiffness and friction
forces, and finally incorporating the effects of boundary conditions to form a coupled model.

Four major components participate in the vibrational response of a drum brake system [15]: the
drum, the brake shoes, the shoe lining, and the backing plate. The shoe linings attached on the
shoes are in contact with the drum to generate radial as well as friction forces during braking. The
two shoes are connected by two hydraulic cylinders. Each of the cylinders contains two floating
pistons to activate the shoes in any braking action. The type of drum brake system under
consideration is illustrated in Fig. 1. The shoes rest on the backing plate and are thus constrained
in z direction (out of the plane of the paper).

Previous research on drum brake squeal has shown that friction-induced vibration is generated
by the stiffness and friction coupling between the drum and the shoes through the shoe lining.
Even though the backing plate vibrates with a large amplitude and may even be responsible for a
large fraction of the noise generated by the brake system, it is believed to be not an essential
contributor to the friction-induced instability in drum brakes. Thus, the simplified coupled model
only includes the drum, the shoes, and the shoe lining, while the effect of the backing plate
stiffness is incorporated in the boundary conditions. See Servis [15] for a comprehensive review of
literature on drum brake squeal.

FE models are generated in ANSYSs for these components using three-dimensional brick
elements (solid 45). Models of the drum and the shoe used for analysis are shown in Figs. 2 and 3.
The drum is clamped in the bolt hole positions while the shoe model uses free boundary
conditions. To include the inertial and stiffness influences of the shoe lining on modal
characteristics (modal frequencies and shapes) of the shoe, the shoe lining is modeled as an
integral part of the FE model of the shoe.

Each component’s FE model is refined and adjusted to make the analytical results close to
experimental modal analysis results [9,15]. An accurate representation of the component models
as well as the statically coupled model [16] is important for good correspondence between
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Fig. 1. Schematic of a drum brake system.

Fig. 2. FE model of the brake drum.
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experimental squeal characteristics and those in simulations because the brake system’s propensity
to squeal is very sensitive to the geometry of the system and the material properties. Then the
natural frequencies and mass-normalized mode shapes for each component are extracted from the
modal analysis of the FE models. These modal characteristics of the components are used to
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Fig. 3. FE model of a brake shoe with lining.
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replace the FE models to form the coupled system, and the total degrees of freedom are greatly
reduced. To ensure the accuracy of the modal representations of the components and the
convergence of the stability analysis results, the upper cut-off frequency for individual component
modes was selected at least as high as twice of the squeal frequency of interest. It was found that
for a system model constructed in this manner, the frequencies of the statically coupled drum-
shoes-lining system exhibited convergence in the range of interest. More specifically, for the results
reported later in this work, 50 modes of the drum up to frequency 6271Hz and 50 modes of each
of the shoe up to frequency 8522Hz were retained in the model.

The equations of motion of the uncoupled system including one drum and two identical shoes
can be written as

f €qg þ ½o2�fqg ¼ f0g, (1)

where ½o2� is a diagonal matrix of the extracted N natural frequencies of the components, and fqg

is an N-vector of generalized coordinates. The number of degrees of freedom of the system, N, is
equal to the total number of extracted component modes.

The next step in the system modeling process is to consider the coupling between the drum and
each shoe through the shoe lining. As shown in Fig. 4, the contact interface between the drum and
shoe is first discretized into a mesh of M two-dimensional contact elements, which are not
necessarily the same as the elements in the FE models. The lining material is then modeled as a
series of discrete springs located at the centroids of contact elements. The stiffness of each spring is
the total stiffness of the lining in contact with the contact element, and can be found by

kn ¼ Elin � An=hlin, (2)

where kn and An represent the spring stiffness and the area of the nth element respectively, and Elin

and hlin are the Young’s modulus in radial direction and thickness of the lining, respectively. Elin is
dependent on the contact pressure at the friction interface. The interface pressure distribution is in
turn dependent on the actuation loads and the contact condition, and generally is non-uniform
[17,18]. To make it easy to focus on the effects of friction coupling and to simplify the analysis,
Elin is assumed to be uniform in the first approximation. After fully understanding the mechanism
of brake squeal, non-uniform Young’s modulus of the lining can be incorporated into the system
model without any technique difficulties. Since the stiffness of each spring element depends on the
area of the contact element, the stiffness of the springs can also be non-uniform if the mesh is not
uniform. Furthermore, this approach allows for the flexibility of incorporating effects of
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Fig. 5. Force diagram at the nth lining spring element.

Fig. 4. Discretization of contact interface between the shoe and the drum, and its representation by equivalent springs.
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modification in lining geometry often incorporated as practical measures to reduce propensity to
squeal. These include chamfered lining pads as well as pads with segmentations.

The spring force and the friction force generated at each contact element can be expressed in
terms of component displacements at the centroid of the element. For example, as shown in Fig. 5,
the forces for the nth element at the interface between the drum and a shoe can be written as

F̂ n
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where Rd and Vd are the displacements of the centroid of the nth element on the surface of the
drum in r and y direction, respectively, and Rs and Vs are those of the shoe. Vd represents the
contribution of the linear vibration about an equilibrium state, in which the shoes are steadily
sliding over the rotating drum surface after the brake is applied. Note here that the possible
component of friction force in z direction is neglected in the model as the slip velocity is essentially
in the y direction.

The same procedure is repeated for each contact element, and the combination of all these force
vectors results in

fF̂g ¼ �½½Â� þ m½B̂��fÛg. (4)

Here the ½Â� and ½B̂� matrices are composed of the elemental contact matrices ½Ân� and ½B̂n�; with
n ¼ 1; 2,y, M, as submatrices.

In order to incorporate the interface forces into the system model, the coordinate
transformation between the displacement coordinates fÛg and the system generalized coordinates
fqg is

fÛg ¼ ½F̂�fqg, (5)

where ½F̂� is a non-square matrix containing the component mode shape deformations at the
centroids of the contact elements. Since each contact element force vector contains two
components (normal and tangential) and the braking system has contact between each shoe and
the drum, ½F̂� is a 4M�N matrix. The centroid mode shape deformation can be obtained by a
linear interpolation of the mode shape deformations of contact element nodes. In this way, the
proposed approach does not require the FE meshes of the drum and shoes in the contact area to
match, hence simplifying the FE modeling of the components.

Substituting Eq. (5) into Eq. (4) and premultiplying by ½F̂�T produces the generalized forces ff 1g

in the model that arise due to the normal and frictional forces at the interface:

ff 1g ¼ ½F̂�TfF̂g ¼ �½½A� þ m½B��fqg, (6)

where

½A� ¼ ½F̂�T½Â�½F̂�; ½B� ¼ ½F̂�T½B̂�½F̂�. (7,8)

Other component interconnections are also considered. These include the constraints imposed
by the hydraulic cylinders for the brake shoes at points of brake actuation, and the constraints
imposed on the shoes by their rest points on the backing plate. Thus, the axial compliance of the
hydraulic cylinders between the ends of each shoe is modeled as linear springs connecting the two
shoes. In order to include the contact stiffness between the shoes and the backing plate, springs
are used to connect the shoes to the ground in both z and y directions. The contact between the
shoes and the backing plate is assumed to be smooth, and no friction force is included at these
interfaces. Proper hydraulic and backing plate stiffnesses can be obtained through validation of
the coupled model to match the computational coupled frequencies with the experimental results.
Using a procedure similar to the one used for the lining coupling, the force vector due to both of
the above mentioned stiffness boundary conditions can be written as

ff 2g ¼ �½C�fqg. (9)
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The linear equations of motion for the complete coupled brake system are formed by combining
the uncoupled system (1) with the force vectors in Eqs. (6) and (9), and can be written as

f €qg þ ½½o2� þ ½A� þ m½B� þ ½C��fqg ¼ f0g. (10)

In summary, ½A� and ½C� are stiffness contributions due to the lining and shoe supports,
respectively. Since generalized forces corresponding to these matrices are conservative, ½A� and ½C�

are both symmetric and positive semi-definite. The matrix ½B� arises from friction coupling
between the shoes and the drum. The fact that the corresponding generalized forces are non-
conservative is reflected in the ½B� matrix being asymmetric.

The vibrational and stability characteristics of the coupled brake system can be then determined
from the eigenvalue problem corresponding to Eq. (10):

½l2
½I � þ ½o2� þ ½A� þ m½B� þ ½C��frg ¼ f0g, (11)

where fqg ¼ frgelt:
In the absence of lining coupling (i.e., ½A� ¼ ½0� and m ¼ 0), the eigenvalues are purely imaginary

with the imaginary parts being the natural frequencies of the drum component and of the shoes
coupled through the hydraulic cylinder stiffness and backing plate stiffness. Note that the
corresponding eigenvectors can then be used to reconstitute the elastic modes of the brake system.
In the presence of lining stiffness coupling but no friction coupling, the eigenvalues are again
purely imaginary and correspond to the natural frequencies of an engaged brake system which is
not rotating (since no friction forces act between the drum and shoes). This will be referred to as
the ‘‘statically coupled’’ system. In the presence of both stiffness and friction coupling in the lining
(i.e., the complete form of Eq. (11)), the eigenvalues are no longer guaranteed to be purely
imaginary since ½B� is asymmetric. When all of the eigenvalues are purely imaginary, these
correspond to the natural frequencies of an engaged and rotating system. If any of the eigenvalues
is complex, it will appear in the form of complex conjugate pairs, one with positive real part and
the other with negative real part. The existence of complex roots with positive real parts indicates
the presence of a ‘‘mode-merging’’ (or ‘‘coupled-mode’’ flutter) instability, which causes brake
squeal. The value of friction coefficient m that demarcates stable and unstable oscillations will be
referred to as a ‘‘critical value’’ of friction coefficient, mcr: The imaginary part of the eigenvalue
with a double root at this mcr is the ‘‘squeal’’ frequency, and the corresponding reconstituted
elastic mode of the complex structure is the mode shape at squeal.
3. Analysis of the coupled model

The numerical results presented in this work correspond to a drum brake system described by
the parameters given in Table 1. The material properties for the drum, the shoes, and the lining
used in the FE model are given in Table 2. For this system, a total of 150 component modes were
incorporated into the coupled model. These include the first 50 modes each for the drum and the
two shoes. These modes include six rigid body modes for each shoe, modes up to the natural
frequency of 6271Hz for the drum, and non-rigid body modes up to frequency 8522Hz for the
shoes.
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Table 1

Nominal values of system geometric parameters

Parameter Symbol Value

Inner radius of drum ring rd 0.160m

Width of drum ring wd 0.148m

Height of drum ring hd 0.012m

Thickness of drum cap hc 0.009m

Inner radius of drum cap bc 0.075m

Arc length of shoe gs 132.81

Width of shoe top wt 0.102m

Height of shoe top ht 0.0038m

Width of shoe rib ws 0.006m

Height of shoe rib hs 0.032m

Arc length of lining glin 1201

Width of lining wlin 0.1m

Thickness of lining hlin 0.011m

Table 2

Nominal values of material parameters

Parameter Symbol Value

Density of drum material rd 7250 kg/m3

Young’s modulus of drum Ed 1.1� 1011N/m2

Density of shoe material rs 7860 kg/m3

Young’s modulus of shoe Es 2.1� 1011N/m2

Density of lining material rlin 1650 kg/m3

Young’s modulus of lining (in radial direction) Elin 2.1� 108 N/m2
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For the results presented in Sections 3.1 and 3.2, the hydraulic cylinder stiffness and backing
plate contact stiffness are set to equal zero. The primary purpose here is to understand the
influences of mode merging and veering on the occurrence of brake squeal, and this understanding
is independent of brake types and boundary conditions. Their effects will be considered in a later
section.

3.1. Effect of the friction coefficient

To study the influence of friction, the complex eigenvalue analysis of Eq. (11) was conducted
using the nominal lining stiffness derived from Tables 1 and 2. The variations of the frequencies
(or imaginary parts of the eigenvalues in case of complex frequencies) of modes 20–32 (lying in the
range of 2100–2900Hz) with the friction coefficient m are shown in Fig. 6. These mode numbers
are identified in terms of the ordering of eigenvalues for the statically coupled modal model. For
this nominal system, there are no other modes that exhibit any instability in the range of
0omo0:5:
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Fig. 6. Variation of the frequencies (or imaginary parts of the eigenvalues in case of complex frequencies) with m:
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Both the frequencies and mode shapes change when friction coefficient varies. At the critical
value of friction coefficient, a pair of modes merge, i.e., their frequencies and mode shapes become
identical. This merging state defines the onset of squeal.

Two occurrences of mode-merging instability are observed in the frequency range and range of
friction coefficients presented in Fig. 6. One mode-merging occurs between modes 21 and 22 near
mcr ¼ 0:32: Note that for each mode of the system, the components of the system are oscillating
with a specific shape distribution. The shapes of these two modes for m ¼ 0 are dominated by the
bending modes of drum side wall and shoe components. When m is slightly larger than mcr; the
corresponding eigenvalues become complex, with imaginary parts (‘‘squeal frequency’’) near
2176Hz. A second mode merging occurs between modes 30 and 31 near mcr ¼ 0:08; with shapes of
these two modes at m ¼ 0 being dominated by the torsional modes of drum side wall and shoe
components. The squeal frequency for this mode merging is near 2784Hz. Among the various
critical values of m for different frequency pairs, the minimum one ðmcr;minÞ is the most important
and defines the stability boundary for a brake system. The squeal modes for the nominal drum
brake system for these two critical values of m are presented in Fig. 7. Recall that at a critical value
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Fig. 7. Mode shapes at onset of squeal for two different critical values of m: (a) mode shapes of the coupled drum brake

system when modes 21 and 22 have merged; (b) mode shapes of the coupled drum brake system when modes 30 and 31

have merged.

J. Huang et al. / Journal of Sound and Vibration 289 (2006) 245–263 255
of m; two distinct modes have merged and have the same natural frequencies and identical mode
shapes.

To explain why brake squeal occurs at some specific and distinct frequencies, many investigators
have conducted experimental investigations [6,19]. In these experiments it is found that squeal
frequencies are often close to natural frequencies of one or more of the components or near some
natural frequencies of the statically coupled system. Since both the frequencies and mode shapes
change as the brake is engaged, and further change as the friction is included, it may be difficult to
identify which component modes lead to squeal. Moreover, there are many more component modes
in a brake system, and it is difficult to explain why squeal occurs only at a few frequencies.

Chowdhary et al. [10] in their work with disc brakes found that the modes with the least
separation due to static coupling tend to merge and become complex for higher values of m: This
conclusion agrees with the fact that usually the neighboring modes with close frequencies or the
pairwise modes arising due to components symmetry tend to merge.

It can be seen from Fig. 6 that modes 29 and 30 have the smallest separation at m ¼ 0; however,
mode 30 is seen to merge with mode 31 rather than with mode 29. It is expected that the shapes of
a pair of modes also play an important role in mode merging in addition to the closeness of their
frequencies. Consider the radial components of the statically coupled system’s mode shapes for
modes 29–32, or more specifically the modal deformations of the drum and a shoe in these modes
(see Fig. 8).
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Fig. 8. Radial component of deformations for drum and shoe in mode shapes of the statically coupled brake system: (a)

mode 29, (b) mode 30, (c) mode 31, (d) mode 32.
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For each statically coupled mode for the system at m ¼ 0; the mode shapes of the two shoes are
either identical to each other or differ by a phase angle of 1801. The mode shapes of the shoes
show a strong resemblance to those of the corresponding drum side wall where the two are in
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contact through the lining. The statically coupled modes can be divided into two groups: in one
group the two shoes (and also the parts of the drum side wall in contact with the shoes) move in
the opposite radial direction (one moves outwards while the other moves inwards) as is the case
with modes 30 and 31, while in the other group the two shoes move in the same radial direction as
is the case with modes 29 and 32. All the modes in the same group will be termed ‘‘compatible’’,
while the modes from different groups will be termed ‘‘incompatible’’. Compatible modes are
more similar than incompatible modes at m ¼ 0; and can quite possibly become identical when m is
increased. Incompatible modes such as modes 29 and 30, however, are never seen to combine to a
merging state even though their frequency separation is quite small at m ¼ 0:

It can be concluded that the modes should satisfy two conditions for them to merge: (1) the
separation between the frequencies of two modes of a statically coupled system is sufficiently
small, and (2) their component-wise mode shapes are compatible. When these two conditions are
met, the two modes have a strong possibility to merge and cause squeal in the presence of friction
coupling. Note that the friction coupling changes not only the natural frequencies of these modes
but also their mode shapes so as to bring them closer and finally make them identical (both in
frequency and in mode shape) at merging.

3.2. Influence of the lining stiffness

The effective stiffness of the lining material has a strong influence on the propensity to squeal in
braking system for a number of reasons. Firstly, compression tests on friction lining material
show that the Young’s modulus of the lining material is dependent on the engagement pressure,
with the material becoming stiffer at higher engagement pressures. Secondly, gradual wear of the
lining material will reduce the lining thickness, and Eq. (2) shows that a decrease in lining
thickness increases the effective lining stiffness. Thirdly, the lining stiffness is important in the
stiffness and friction coupling of the drum and shoe modes. Brakes with different lining stiffness
may have different squeal propensity. Hence, it is necessary and crucial to investigate the effect of
the lining stiffness on the squeal propensity for the design of a quiet brake system.

Since the separation between the statically coupled frequencies is an important factor in
determining the system stability characteristics, the influence of lining stiffness was first studied on
the statically coupled frequencies. Then the friction was included in the system, and the changes in
the value of mcr;min with the changes in lining stiffness were studied. In order to explore the
correlation between statically coupled frequencies and the stability boundaries defined by mcr;min;
both results are plotted versus the normalized lining stiffness k in Fig. 9. Here k is a ratio of lining
stiffness to nominal value of the lining stiffness per unit area and is defined by

k ¼
Elin=hlin

ðElin=hlinÞnominal

. (12)

In the stiffness range from k ¼ 1:07 to 1.11, the values of mcr;min correspond to those due to the
merging of modes 21 and 22. The separation between these two statically coupled frequencies
reaches its smallest value at k ¼ 1:09 and becomes larger away from this stiffness value.
Correspondingly, the critical values of m become minimum at k ¼ 1:09 and increase on either side
of this value. The modes 17 and 18 are found to merge and form the stability boundaries in the
range from k ¼ 1:19 to 1.26. They show the same behavior in that the minimal separation within
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Fig. 9. Variation of the statically coupled natural frequencies and the critical friction coefficient mcr;min with the lining

stiffness k.
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the statically coupled frequencies corresponds to minimal critical value of m: The mode pair 30
and 31 and the mode pair 29 and 32 with small frequency separations in the whole range are
responsible for all the other values of mcr;min in Fig. 9. This clearly demonstrates that mcr;min and the
corresponding pair of modes responsible for ‘‘coupled-mode’’ instability change with the variation
of lining stiffness.

Though the separation within the statically coupled frequencies has a significant effect on the
stability characteristics of the system, there are frequencies that intersect and have zero separation
at some lining stiffness but do not lead to mode merging when friction is included in the coupled
system. For example, the frequencies of modes 31 and 32 intersect at k ¼ 1:02; but these two
modes do not produce squeal. From the viewpoint of mode shapes, modes 31 and 32 are
‘‘incompatible’’. Now this phenomenon will be explained from the viewpoint of mode coupling.

Numerical results show that as a function of lining stiffness, the statically coupled modes of the
brake assembly which tend to merge as the friction coefficient is increased are always associated
with the phenomenon called ‘‘curve veering’’, while the modes which simply cross do not merge.
In curve veering, two frequency loci (frequency curves as a function of some parameter) approach
and then quickly diverge without intersection. An important feature of curve veering is that the
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two eigenvalue curves do not actually intersect, and the two modes or eigenfunctions interact
during veering in a rapid and continuous way. During curve crossing, however, the eigenfunctions
interchange abruptly [20].

Traditionally the eigenvalue curve crossing and veering are illustrated by plotting eigenvalue
loci versus a system parameter and checking whether the loci intersect or not. This method is not
reliable since the observation is affected by the scale or resolution used to plot the figure. The
‘‘eigenfunction sensitivity’’ is presented here as a better way to distinguish between the ‘‘curve
veering’’ and ‘‘curve crossing’’ behavior of modes. The sensitivity function for eigenvectors (or
‘‘eigenfunction sensitivity’’ in short) is defined as the inner product of fr and f0

s :

Srs ¼ hfr;f
0
s i ¼ ðfrÞ

Tf0
s , (13)

where f0
s denotes the unperturbed sth eigenvector, and fr denotes the perturbed rth eigenvector at

an adjacent lining stiffness when m ¼ 0: The eigenvectors are normalized so that ðf0
s Þ

Tf0
s ¼ 1 and

ðfrÞ
Tfr ¼ 1: The values of Srs are between 0 and 1, which represent the degree of resemblance

between fr and f0
s :

The differences between curve veering and crossing are clearly illustrated in Figs. 10 and 11, in
which the eigenfunction sensitivity is plotted with small variations of the lining stiffness k. In each
figure, the values of inner products clearly show the changes of the eigenfunctions with the change
in lining stiffness. In curve crossing there is no interaction between the two eigenfunctions and the
two modes are totally independent of each other, while the two eigenvectors are almost
interchanged during veering in a continuous way as the parameter k is varied.

When two statically coupled modes cross, their mode shapes are incompatible. Since there is no
coupling between the modes showing curve crossing, no matter how small the separation is, they
Fig. 10. (a) Frequency loci and (b) modal sensitivity functions for modes 21 and 22.
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Fig. 11. (a) Frequency loci and (b) modal sensitivity functions for modes 31 and 32.
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are not expected to merge or lead to instability when the friction is present in the system. When
two statically coupled modes veer, their mode shapes are compatible. When coupling exists
between two modes, the modes interact and they are likely to merge when friction exists and
exceeds a critical value. This phenomenon of ‘‘eigenvalue veering’’ as an indicator of the
possibility of merging of the corresponding eigenvalues to cause brake squeal was also seen for the
case of disc brakes in Ref. [21].

It should be noted here that though the doublet modes due to symmetry of the drum may have
small separation and come to merge, the drum modes with different orders are also possible to
merge. Hence, dynamic instability is more general and more appropriate than binary flutter as the
mechanism for brake squeal.
3.3. Effect of the hydraulic cylinder stiffness

To study the influence of the hydraulic cylinder stiffness kh, four springs with constant stiffness
are used to connect the ends of the shoes. The non-zero matrix ½C� is now included in the system
model (10).

The calculations show that when kh is less than 1� 106 N=m; the stability characteristics of the
coupled system are almost unaffected and the stability diagram is similar to Fig. 9. When kh is
increased beyond 1� 106N/m, the changes in the stability characteristics become significant.
Fig. 12 shows the results for the case with kh ¼ 6:5� 106 N=m: Compared to Fig. 9, the statically
coupled frequencies increase by different amounts so that the separation of the various
frequencies change. The modes 21 and 22 still merge, but the corresponding instability region
moves to left on the lining stiffness axis from its original location. The instability region resulting
from the merging of modes 17 and 18 shifts left to a much larger extent.
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Fig. 12. Stability characteristics of a coupled drum brake system with hydraulic cylinder; kh ¼ 6:5� 106 N=m:
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When the frequencies and modes ultimately responsible for squeal undergo small changes due
to the variation of a parameter, the stability characteristics of the system may change
dramatically. Some unstable regions may shift their locations or even disappear and some new
unstable regions may be created because of the changes of the frequency separations. Hence, the
instability regions are very sensitive to the changes in system parameters. This clearly points to the
difficulties that arise in simulating practical brake systems because the system boundary
conditions are not easily specified and therefore not easy to model accurately.
4. Conclusions and discussion

Brake squeal is a phenomenon of self-excited friction induced vibrations resulting from mode
coupling. This paper presents an approach to develop a numerical drum brake model for squeal
prediction, and analyzes the conditions that can lead to brake squeal. Based on the numerical
model and results of complex eigenvalue analysis of the linear equations of motion, the following
conclusions can be drawn:
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(1) The component modal characteristics can be extracted from either analytical analysis or FE
analysis. FE analysis makes it easy to capture geometry complexities of the components and
incorporate the results of contact analysis in the system model. By creating virtual mesh of contact
elements, the approach does not require the FE meshes of different components at the interfaces
to match, thus greatly facilitating the FE modeling of the components.

(2) If the separation between the two modes due to static coupling is small enough and their
mode shapes are compatible, the two modes have a good likelihood that they will merge when the
friction is introduced and increased. Only compatible modes have the possibility to interact and
become identical to result in instability. Though mode shapes of brake components are often
measured with experimental methods, there are few investigations on the influence of mode shapes
on mode merging. The understanding of the important role of mode shapes is expected to be of
great help to prediction of the occurrence of squeal.

(3) The statically coupled modes which tend to merge in the presence of friction always exhibit
curve veering phenomenon, while the modes which simply cross do not cause instability. There is
no coupling between the statically coupled modes showing curve crossing. Curve veering reflects
the coupling of compatible modes, and this coupling may cause the two modes to merge as the
friction increases. Eigenvector sensitivity clearly allows for differentiation between modes that
undergo curve crossing and those that undergo veering.

(4) The stability boundaries are sensitive to changes in parameters such as lining stiffness. Due
to the correlation between the critical values of friction coefficient and the separations of the
statically coupled frequencies, the changes in separations partially reveal the effects of the
parameters on system stability and can provide an explanation to some squeal reduction
techniques. These will be the subject of a work under preparation.
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